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Abstract. – The physical properties of blends of distinct homopolymers, cross-linked be-
yond the gelation point, are addressed via a Landau approach involving a pair of coupled
order-parameter fields: one describing vulcanisation, the other describing local phase separa-
tion. Thermal concentration fluctuations, present at the time of cross-linking, are frozen in by
cross-linking, and the structure of the resulting glassy fluctuations is analysed at the Gaussian
level in various regimes, determined by the relative values of certain physical length-scales.
The enhancement, due to gelation, of the stability of the blend with respect to demixing is
also analysed. Beyond the corresponding stability limit, gelation prevents complete demixing,
replacing it by microphase separation, which occurs up to a length-scale set by the rigidity of
the network, as a simple variational scheme reveals.

Introduction. – Molten blends of distinct homopolymers have a strong tendency to phase
separate, compared with unpolymerised mixtures, due to the fact that their entropy of mix-
ing is reduced by a factor of the degree of polymerisation. Random permanent cross-linking
hampers the demixing process, and completely inhibits macroscopic phase separation, pro-
vided enough cross-links are introduced to cause the blend to undergo a transition to a gel.
De Gennes [1] was the first to point out that the region of compatibility (i.e. the region in
which the melt remains mixed) is substantially increased by cross-linking, and that instead of
macroscopic phase separation, the gel undergoes microphase separation (MPS) with a domain
size comparable to the typical mesh size of the random macromolecular network.

De Gennes’ predictions were subsequently confirmed in scattering experiments [2]. How-
ever, a discrepancy remained, concerning the scattering intensity at small wave-numbers.
Whereas de Gennes predicted a vanishing intensity at zero wave-number, via an analogy with
the polarisation of a dielectric medium, the experiments showed a non-vanishing intensity.
Several modifications of the de Gennes theory have been proposed. Benmouna et al. [3]
suggest that the discrepancy arises through the neglect of concentration fluctuations, which
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are present during the cross-linking process and are “frozen in” by the cross-linking process.
These authors introduce a screening length, self-consistently, by assuming that the scattering
intensity at zero wave-number is not changed by cross-linking. Read et al. [4] instead suggest
a microscopic model for the gel, in which each chain is anchored at its ends to fixed random
points in space. By using reasonable assumptions for the distribution of the quenched end-to-
end-vectors, they arrive at an intensity similar to that of Ref. [3], and also investigate effects
of applied strain. Simulations by Lay et al. [5] reveal rather large cooperative rearrangements
of the network upon MPS, allowing for domain sizes larger than the radius of gyration of the
network strands.

In this Letter we focus on “charge” fluctuations in gels that have been prepared from blends
in a homogeneously mixed state, characterised by a sufficiently small Flory incompatibility
parameter. By “charge” we mean the difference between the local densities of the two species
of homopolymer. We concentrate on two themes:

• To what extent do the charge fluctuations that are present during cross-linking become
frozen-in in the gel phase? This is particularly interesting if the cross-linking is performed
close to phase separation, so that fluctuations are present up to a very large length-scale,
which can be either smaller or larger than the localisation length-scale characterising
the gel.

• How do frozen-in charge fluctuations affect the scattering intensity and MPS? To what
extent does gelation enhance the stability of the mixed state, and to what extent can one
characterise the MPS state that emerges at large enough incompatibility parameter?

Our starting point is a Landau expansion for the free energy in terms of two order param-
eter fields: the local charge fluctuations associated with phase separation, and the local static
density fluctuations associated with the gelation transition. This free energy can be derived
from a microscopic model [6], extending previous work on the gelation transition [7] to include
the incompatibility of homopolymer blends. In this Letter we do not dwell upon the derivation
of the Landau free energy, but rather work out its consequences. As we shall see, the phase
diagram is controlled by three parameters: the cross-link density control parameter µ, and
the incompatibilities at cross-linking χp and at measurement χm (p stands for preparation,
and m for measurement).

The Landau free energy allows us to compute the frozen-in charge fluctuations without
any ad hoc assumptions. We show that there are competing length-scales: in a strong gel
the fluctuations are frozen-in almost completely, and hence preserve the native length-scale at
cross-linking; in a weak gel, by contrast, the charge fluctuations are only partially frozen in,
limited by the length-scale characterising localisation in the gel. We calculate the modification
of the range of compatibility due to cross-linking, in terms of the gel order parameter, and
discuss the scattering intensity in the gel, including the region in which MPS is approached.
With the aim of developing a rough picture of the MPS state itself, we also analyse a lamellar-
state Ansatz for the MPS state beyond, but close to, the transition.

Model. – We consider a blend of two incompatible homopolymer species, “A” and “B”.
The two species are modelled identically as Gaussian chains of length L, and the blend is taken
to contain N/2 chains of each type. The mutual repulsion is modelled by the interaction

Hχ = −χV

2N

∑

a,a′=A,B

(2δa,a′ − 1)

N/2
∑

i,i′=1

∫ 1

0

ds

∫ 1

0

ds′ δ
(

r
a
i (s) − r

a′

i′ (s′)
)

, (1)
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where r
a
i (s) denotes the position of the monomer at arclength s on chain i, which can be

either of type A (a = A) or B (a = B). The strength of the repulsion is controlled by the
incompatibility, i.e., the Flory-Huggins parameter χ. On cooling, the un-cross-linked melt
would undergo a second-order phase transition at T/χ = 1 from a homogeneously mixed
phase to a phase-separated state. In the following, we choose units such that kBT = 1. Since
there is no other relevant energy scale, we shall refer to χ as the inverse temperature. The
order parameter for a general phase-separation transition is given by the local imbalance in
the concentration of A and B monomers (which we are referring to as charges):

Ψ(k) =
1

N

∑

a=A,B

N/2
∑

i=1

∫ 1

0

ds (δa,A − δa,B) 〈eik·ra
i (s)〉. (2)

In the homogeneous state the expectation value of the order parameter vanishes: Ψ(k) = 0. If
two homogeneous phases coexist, Ψ(r) = ±Ψ0 6= 0 deep within either of them. For microphase
separation we expect Ψ(k) 6= 0 for the nonzero k’s characterising, e.g., a striped state.

The cross-links are taken to connect randomly chosen pairs of monomers, without regard
to their type, except for the intrinsic charge correlations present in the un-cross-linked blend.
Hence, we use the Deam-Edwards distribution [8] to average over the quenched connectivity.
As a function of the amount of cross-linking, the system undergoes a gelation transition from
a viscous fluid to an amorphous solid at µc = 1 [7]. The order parameter for the gelation
transition comprises the (g ≥ 2) moments of the local density fluctuations:

Ω(k1, k2, . . . , kg) =
1

N

∑

a=A,B

N/2
∑

i=1

∫ 1

0

ds
[

〈

eik1·ra
i (s)

〉

. . .
〈

eikg·ra
i (s)

〉

]

, (3)

and these acquire nonzero values in the gelled state, provided that k1 + k2 · · ·+ kg = 0. This
condition is a consequence of the macroscopic translational invariance (MTI) of the emerging
amorphous solid, which of course enforces the MTI of the density itself: Ω(k1) = 0. In our
model this homogeneity is ensured by a sufficiently strong excluded-volume interaction. The
thermal average is denoted by 〈· · · 〉, and the quenched average over the cross-links by [· · · ].

Landau free energy. – Averaging over the quenched random cross-links with help of the
replica technique gives rise to a Landau free energy f = limn→0 fn in terms of the replicated
order parameters:

2nfn({Ψ, Ω}) =
∑

k̂

(

1
µ − gD

(

|k̂|
)

)

∣

∣Ω
(

k̂
)∣

∣

2 − 1
3

∑

k̂1,k̂2,k̂3

δk̂1+k̂2+k̂3,0̂ Ω(k̂1)Ω(k̂2)Ω(k̂3)

+

n
∑

α=0

∑′

k

(

1
χα − gD

(

|k|
)

)

∣

∣Ψα(k)
∣

∣

2 −
∑

α6=β

∑′

k1,k2

Ψα(k1)Ψβ(k2)Ω(−k1ê
α − k2ê

β) + · · · (4)

To simplify the notation we have introduced (n + 1)-times replicated wave-vectors k̂ =
(k0, k1, . . . , kn) =

∑n
α=0 kα êα, which can be expanded in a complete orthonormal basis

{êα}n
α=0 in replica space. The symbols

∑′
k and

∑

k̂ denote summations excluding the terms

k = 0 and k̂ = k êα. The Debye function is given by gD(k) ≡ 2(e−k2 − 1 + k2)/k4, and
all wave-numbers have been made dimensionless with the radius of gyration R2

g = La2/2d
of a single chain, with d being the dimensionality of space. In general, the homopolymer
blend is cross-linked at one temperature, χ−1

p , and measurements are performed at a distinct
temperature, χ−1

m . In the replica formalism this is encoded in χα = (χp, χm, . . . , χm).
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As a first step, we apply the saddle-point approximation to Eq. (4) in the range of param-
eters χp < 1, χm < 1 and µ > 1, so that Ψ̄ = 0, whereas the order parameter for the gel [9,10]
acquires a nonzero value:

Ω̄(k̂) = δ
k̃,0 Q

∫ ∞

0

dτ π(τ) exp(−k̂2ξ2
l /2τ) ≈ δ

k̃,0 · ξ−2
l w

(

|k̂|ξl/
√

2
)

, (5)

A nonzero fraction Q of particles is localised with a broad distribution of localisation lengths,
expressed in terms of a scaling function π(τ). The typical localisation length ξl is given by
the distance ξ−2

l = µ− 1 from the gelation transition. Macroscopic translational invariance is

guaranteed by the Kronecker-δ factor, enforcing k̃ ≡
∑

α kα = 0. The scaling function w(x)

is related to that defined in [7] via w(x) ≡ 2 · ω
(
√

4/3 · x
)

.

Stability of the homogeneously mixed state. – Next we consider charge fluctuations and
study stability with respect to phase separation with help of the Hessian matrix

Aα,β(k) ≡ δα,β

(

χ−1
α − gD(k)

)

− (1 − δα,β) ξ−2
l w

(

kξl

)

, (6)

obtained by expanding Eq. (4) about the saddle point. In the limit n → 0, the eigenvalues of A
are given by λ1(k) = χ−1

p −gD(k) and λ2(k) = χ−1
m −gD(k)+ξ−2

l w
(

kξl

)

. The first eigenvalue,
λ1, is not degenerate and is always positive, as we assume that cross-linking takes place in
the homogeneously mixed state. The second eigenvalue, λ2, is n-fold degenerate and vanishes
at χcrit = 1 + 1.38 ξ−2

l at the nonzero wave-number k2
crit = 1.78 ξ−2

l . (These results were
derived from the Landau expansion, and hence are systematic only to lowest order in ξ−2

l .)
We conclude that the range of temperatures χm < χcrit in which the gel is stable with respect
to phase separation is enlarged, compared to the un-cross-linked polymer blend, as one would
expect, because cross-links hinder the demixing process. In this temperature range there are,
however, frozen-in charge fluctuations, which we shall discuss next. Later we shall discuss the
instability with respect to MPS that occurs when χm approaches χcrit from below.

Pseudo phase diagram. – A “phase diagram” in the χ-µ-plane is shown in Fig. 1. The
line µ = 1 (dashed) separates the gel and the liquid state, which is divided into a mixed phase
and a macroscopically phase separated liquid by χ = 1 (solid line). We restrict the discussion
to gels prepared from a homogeneous liquid (χp < 1) by instantaneous cross-linking (vertical
jump); after preparation, only the incompatibility χm may be varied (horizontal moves). The
line χm = χcrit (dotted) separates the mixed gel from the microphase separated one. The
history of the gelation process is indicated by a path in the diagram. Of particular interest
are three paths: A refers to a gel prepared close to macroscopic phase separation, B to a weak
gel, and C to a gel close to microphase separation. Since the properties of the gel depend on
the preparation, Fig. 1 is not an equilibrium phase diagram.

Charge glass. – Within the Gaussian expansion around the saddle point, charge fluc-
tuations are determined by the Hessian according to 〈Ψα(k)Ψβ(−k)〉 = (A−1(k))α,β . In
particular, glassy correlations are detected by a non-zero off-diagonal propagator:

Sgl(k) = [〈Ψ(k)〉〈Ψ(−k)〉] =
ξ−2
l w(kξl)

(

χ−1
p − gD(k) + ξ−2

l w(kξl)
)

(χ−1
p − gD(k))λ2

2(k)
. (7)

To discuss these fluctuations, one should note that there are three competing length-scales:
The typical localisation length ξl of the gel, determined by the distance to the gelation thresh-
old; the correlation length ξp of the preparation ensemble, given by the distance ξ−2

p = 1−χp
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liquid
separated
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µ

mixed liquid

mixed gel

Fig. 1 – Pseudo phase diagram of the polymer
blend in the χ-µ-plane. The state of the sys-
tem is, however, history-dependent (see text
for details).
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Fig. 2 – Disorder-averaged Sgl(k)/Sgl(0) vs. k2 for
χm = 0.1, ξ2

l = 102, and ξ2
p = 105, 104.5, . . . , 101.

Inset: Half-width, crossing over from ξ−2
p to ξ−2

l

(horizontal line).

to the demixing transition before cross-linking; and ξm, corresponding to the distance ξ−2
m =

χcrit − χm to the microphase separation line.
If ξp ≫ (ξl, ξm), the gel is prepared close to macroscopic phase separation, corresponding

to path A in Fig. 1. The thermal charge fluctuations present before cross-linking are very
long-ranged, and are almost completely frozen in by the network. In this regime, Eq. (7)
reduces to Sgl(k) ∼ (ξ−2

p + k2/3)−1, and the glassy correlations decay on the scale k ∼ ξ−1
p ,

given by the fluctuations of the preparation ensemble.
If ξl ≫ (ξp, ξm), i.e. in a weak gel (path B), the network is rather wide-meshed, which

limits the preservation of fluctuations to the inverse localisation length ξ−1
l . In this limit, the

glassy correlations are approximately given by Sgl(k) ∼ w(kξl)/ξ2
l , and decay on the scale

k ∼ ξ−1
l .

The cross-over between these scales is demonstrated in Fig. 2, which shows Sgl(k)/Sgl(0)
far from MPS for ξl = 10. For the leftmost curve ξ2

p = 105 ≫ ξ2
l = 100, and hence the decay

occurs at k ∼ ξ−1
p . Upon decreasing ξp the curves are shifted to the right, until for ξl ≫ ξp

the decay is determined by ξl. The inset shows the half width at half maximum as a function
of ξ−1

p .
Close to microphase separation (path C ), the glassy correlations are dominated by critical

fluctuations on the scale k ≈ kcrit ∼ ξ−1
l and ultimately diverge at microphase separation.

Scattering function. – The scattering intensity is determined by the diagonal correlations

S(k) + χm = [〈Ψ(k)Ψ(−k)〉] = λ−1
2 (k) +

ξ−2
l w(kξl)

(

χ−1
p − gD(k) + ξ−2

l w(kξl)
)

λ2
2(k) (χ−1

p − gD(k))
. (8)

We expect two main contributions to S(k): The fluctuations that are present at cross-linking
and frozen in in the gel, are characterised by small wave-numbers, being the precursor of a
homogeneous phase separation. The fluctuations that signal MPS, on the other hand, are
dominant at k ∼ ξ−1

l .
If ξp ≫ (ξl, ξm), i.e. a gel prepared close to phase separation (path A), the network

preserves the strong fluctuations that were present before gelation, giving a large contribution
at small wave vectors up to k ∼ ξ−1

p .
If ξm ≫ (ξl, ξp), i.e. measurement close to MPS (path C ), the fluctuations towards

microphase separation grow large, giving rise to a peak in the scattering function at k ≈
kcrit ∼ ξ−1

l . At the critical point of MPS, the scattering function diverges like S(k) ∼ λ−2
2 (k).
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Fig. 3 – Scattering function S(k) vs. k2.

The contributions of both regimes can be seen in Fig. 3. Panel (a) shows S(k) for a
fixed distance ξ−2

m from the MPS transition with ξ−2
p decreasing towards (pre-cross-linking)

phase separation. We observe increasingly stronger weight to S(k) at small wave-numbers.
Panel (b) shows S(k) at a fixed distance ξ−2

p from phase separation before cross-linking. Upon
decreasing the distance ξ−2

m to MPS, the scattering function S(k) is dominated more and more
by fluctuations at kcrit.

If ξl ≫ (ξp, ξm), i.e. in a weak gel (path B), the frozen-in fluctuations are small on all
length-scales. Hence, the scattering function is dominated by purely thermal fluctuations,
seemingly towards macroscopic demixing, because the gel is too weak to severely restrict
phase separation on the length scale ξm. In this limit, Eq. (8) reduces to S(k) = ξ−2

m + k2/3,
which decays on a scale k ∼ ξ−1

m and is shown as the lowest curve in Fig. 4. Decreasing
the distance to the (pre-gelation) phase separation point, ξ−2

p , we observe the build-up of
intensity at small wave-numbers (panel a). Decreasing the distance to microphase separation,
ξ−2
m , leads to an increasingly stronger peak at k2

crit ≈ 1.78 ξ−2
l (panel b).
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Fig. 4 – Scattering function S(k) vs. k2.
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Microphase separation. – The analysis of the microphase separated state requires sup-
plementing the Landau expansion (4) by fourth-order terms. To minimise this free energy
variationally, we consider a simple, replica-symmetric, lamellar microphase state:

Ψα
k =

{

0, for α = 0,
1√
2

(

δk,q + δk,−q

)

Ψ̄, otherwise .
(9)

Note that, because the melt is cross-linked in the homogeneously mixed state (χp < 1), the
zeroth replica is treated separately. Inserting the Ansatz (9) into the fourth-order expansion
of the free energy we obtain

lim
n→0

fn

(

Ψ̄, q
)

= 2λ2(q) Ψ̄2 + g4(q) Ψ̄4 , (10)

where g4(q) = 1− 2
3q2+O(q4) denotes a Debye-like vertex function. Minimisation with respect

to both the amplitude Ψ̄ and the wave-number q yields

Ψ̄2 ∼ χm − χcrit and q2
opt − k2

crit ∼ χm − χcrit . (11)

We presume that the free energy would be lowered further in a state that is not characterised
simply by a single wave-vector, as above; instead the direction of the wave vector should vary
locally to adjust to the random static charge fluctuations induced by the cross-links.
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